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We show that the range of every finitely additive state on the systemF (E) of all orthog-
onally closed subspaces of an infinite-dimensional inner product spaceE satisfying the
Gleason property is equal to the real interval [0, 1]. Every pre-Hilbert space satisfies the
Gleason property, and in Keller spaces it fails to hold.

KEY WORDS: inner product space; orthogonally closed subspace; finitely additive
state; range of a state; Hilbert space; Keller space.

1. INTRODUCTION

The systemL(H ) of all closed subspaces of a Hilbert space,H , is the most
important example of quantum logics which plays a fundamental role in the axiom-
atization of quantum mechanics (see, e.g., Varadarajan, 1968). The fundamental
result of Gleason (1957) says that there is a one-to-one correspondence among
σ -additive statess, onL(H ), 3≤ dimH ≤ ℵ0, and trace operatorsT , on H given
by

s(M) = tr(T PM ), M ∈ L(H ), (1.1)

wherePM is the orthogonal projector fromH onto M .
The range of probability measures was probably firstly systematically studied

by Liapounoff (see e.g., Armstrong and Prikry, 1981), where some conditions are
given which guarantee that the range of the probability measure equal the real
interval [0, 1].

Recently, it was shown that the range of every finitely additive state on the
system of all orthogonally closed subspaces of an infinite-dimensional pre-Hilbert
spaceS is also equal to the whole real interval [0, 1]. (Dvureˇcenskij and Pt´ak,
2002) For the finite-dimensional case ofS this is not true, in general.
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In the present paper, we study the range of finitely additive states on the
system of all orthogonally closed subspacesF(E) of an infinite-dimensional inner
product spaceE. We show that if such anE satisfies the Gleason property, then
the range of any finitely additive state is equal to the whole real interval [0, 1].
We show that every infinite-dimensional pre-Hilbert space satisfies the Gleason
property, but in any infinite-dimensional nonclassical Keller space it fails to hold,
and the range of a state can be even a finite set.

2. ORTHOGONALLY CLOSED SUBSPACES OF INNER
PRODUCT SPACES

Let K be a division ring with charK 6= 2 and with an involution∗: K → K
such that (α + β)∗ = α∗ + β∗, (αβ)∗∗ = β∗α∗, α∗∗ = α for all α, β ∈ K . Let E
be a (left) vector space overK equipped with a Hermitian form (·, ·): E × E→ K ,
i.e. (·, ·) satisfies, for allx, y, z ∈ E and allα, β ∈ K , (αx + βy, z) = α(x, z)+
β(y, z), (x, αy+ βz) = (x, y)α∗ + (x, z)β∗, (x, y) = (y, x)∗. The triplet (E, K ,
(·, ·)) is said to be aninner product space (a generalized inner product space)or
a quadratic spaceif (x, x) = 0 impliesx = 0, and unless confusion threatens, we
usually refer toE rather than to (E, K , (·, ·)).

For any nonzero vectorx ∈ E, let sp(x) be a one-dimensional subspace of
E generated by the vectorx. Two vectorsx, y ∈ E are orthogonal, and we write
x⊥y, if (x, y) = 0.

For any subsetM ⊆ E, we putM⊥ = {x ∈ E: (x, y) = 0 for any y ∈ M}.
LetF(E) denote the family of all orthogonally closed subspaces ofE, i.e.,

F(E) = {M ⊆ E: M⊥⊥ = M}, (2.1)

and letE(E) denote the set of all splitting subspaces ofE, i.e.,

ε(E) = {M ⊆ E: M⊥ + M = E}. (2.2)

ThenM ∈ E(E) whenever dimM < ∞ or dim M⊥ < ∞, in particular{0}, E ∈
E(E), and2

E(E) ⊆ F(E).

E is said to beorthomodular iff F(E) ⊆ E(E). Any finite-dimensional inner
product spaceE is orthomodular. IfE is a real, complex, or quaternion inner
product space, then E is orthomudular iff E is a Hilbert space. Keller (1980)
gave examples of nonclassical infinite-dimensional inner product spaces which are
orthomodular.

2 Indeed, letM + M⊥ = E and sinceM ⊆ M⊥⊥, it suffices to prove thatM⊥⊥ ⊆ M. We first note
that{0} = E⊥ = (M + M⊥)⊥ = M⊥ ∩ M⊥⊥. Letx ∈ M⊥⊥. Then there existx1 ∈ M andx2 ∈ M⊥
such thatx = x1 + x2. Hencex2 = x − x1 ∈ M⊥⊥ and thereforex2 = 0 and, consequently,x ∈ M .
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In general, the systemF(E) is an orthocomplemented complete lattice while
ε(E) is an orthomodular poset, i.e., ifM, N ∈ ε(E), M ⊥ N, thenM ∨ N ∈ ε(E),
and in this caseM ∨ N = M + N, and if M ⊆ N, then the orthomodular law

N = M ∨ (N ∩ M⊥ (2.3)

holds.
Moreover, according to Maeda and Maeda (1970, Lemma 33.3),

(i) if M ∈ F(E) and x ∈ E is a nonzero vector, thenM∨ sp(x) = M+
sp(x) ∈ F(E),

(ii)
∧

Mi =
⋂

i Mi for any system{Mi } fromF(E).

A mappings : F(E)→ [0, 1] such that (i)s(E) = 1 and (ii) s(M ∨ N) =
s(M)+ s(N) wheneverM andN are mutually orthogonally elements fromF(E)
is said to be afinitely additive state(or astatein the abbreviation). If (ii) is changed
to (ii)∗ s(

∨∞
i=1 Mi ) =

∑∞
i=1 s(Mi ) for any sequence of mutually orthogonal sub-

spaces{Mi } fromF(E), s is said to be aσ -additive state.
For example, ifE is a finite-dimensional inner product space, then the map-

pings : F(E)→ [0, 1] defined by

s(M) = dim(M)/ dim(E), M ∈ F(E), (2.4)

is a finitely additive state.
Let s be a finitely additive state onF(E). Let us set Ran(s) := {s(M): M ∈

F(S)}. For any integeri = 0, 1,. . . , let us define Ran(s)i := {s(M): ∈ F(E),
dim M = i }.

If E is a finite-dimensional inner product space, ands is defined by (2.4),
then Ran(s) = {0, 1/n, 2/n, . . . , n/n}, wheren = dim E.

If E is an infinite-dimensional inner product space, it is unknown whether
F(E) possesses a finitely additive state. Let us recall that this is not known
(Dvurečenskij, 1992; Pt´ak, 1988) even ifE is a real, complex, or quaternion
incomplete inner product space.

In addition, in Dvureˇcenskij and Pt´ak (to appear), it is shown that, for every
real, complex, or quaternion incomplete inner product spaceE, F(E) possesses
no finitely additive statessuch that|Ran(s)| ≤ ℵ0. It is proved that if such anF(E)
possesses a state s, then Ran(s) = [0, 1].

3. STATES WITH THE GLEASON PROPERTY

In the present section, we introduce the notion the Gleason property of an
infinite-dimensional inner product spaces, and we give the main result of the paper,
Theorem 3.7.

Let E be an inner product space. We say thatE has theGleason propertyif,
for any finite-dimensional subspaceEn, of E, n = dim En ≥ 3, and for any finitely
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additive states onF(En), we have Ran1(s) = [λ, µ], where 0≤ λ ≤ µ ≤ 1 are
real numbers. For example, any real, complex, or quaternion inner product space
of dimension at least three has the Gleason property, see Dvureˇcenskij and Pt´ak
(2002). In Section 4, we show that in Keller spaces it fails to hold.

Lemma 3.1. Let E be an n-dimensional inner product space, n≥ 3, with the
Gleason property

(i) If s is a finitely additive state onF(E), then1/n ∈ Ran1(s).
(ii) A finitely additive state s takes only finitely-many values if and only if s is

defined by (2.4).

Proof: (i) Let Ran1(s) = [λ, µ]. If 1/n < λ, take an orthogonal basisx1, . . . , xn

in E. Then 1=∑n
i=1 1/n <

∑n
i=1 s(sp(xi )) = 1, which is a contradiction. In a

similar way we can show that 1/n ≤ µ.
(i) It is clear that the state (2.4) takes only finitely many values. Conversely,

let s take only finitely many values. Then Ran1(s) is a finite set, therefore, by (i),
Ran1(s) = {1/n} which proves thats is equal to the state defined by (2.4). ¤

We say that a system{xi } of nonzero mutually orthogonal elements of a
subspaceM of E is maximalin M, MOS for abbreviation, if, forx ∈ M such that
x⊥xi for any i , we havex = 0.

Lemma 3.2. Let {yi } be an MOS in a splitting subspace M of E. Then{yi }⊥⊥ =
M.

Proof: It is evident that{yi }⊥⊥ ⊆ M , so thatM⊥ ⊆ {yi }⊥. On the other hand,
let x ∈ {yi }⊥, thenx = x1+ x2, wherex1 ∈ M andx2 ∈ M⊥. Since (x, yi ) = 0
for anyi , we have 0= (x1, yi )+ (x2, yi ) = (x1, yi ). The maximality of{yi } in M
givesx1 = 0, so thatx ∈ M⊥, which means{yi } ⊆ M⊥. ¤

A mappingφ : F(E1)→ F(E2) is said to be ahomomorphismif φ(E1) =
E2, φ(M⊥) = φ(M)⊥, andφ(M ∨ N) = φ(M) ∨ φ(N) for all M⊥N. If φ is in-
jective andφ−1 is a homomorphism,φ is said to be anisomorphism.

Proposition 3.3. Let E1 and E2 be two inner product spaces over the same field,
and letdim E1 = dim E2 < ∞. ThenF(E1) andF(E2) are isomorphic.

Proof: Let dim E1 = n and let{x1, . . . , xn} and {y1, . . . , yn} be orthogonal
bases inE1 andE2, respectively. We define a mappingU : E1→ E2 by U (x) =∑n

i=1 αi yi wheneverx =∑n
i=1 αi xi . Setφ(M) := {U (x): x ∈ M}, M ∈ F(E1).

Thenφ is an isomorphism ofF(E1) andF(E2). ¤



P1: GIR

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470295 September 26, 2003 16:24 Style file version May 30th, 2002

States on Subspaces of Inner Product Spaces with Gleason Property 1407

Lemma 3.4. Let n≥ 1 be an integer and{x1
i } ∪ {x2

i } ∪ · · · ∪ {xn
i }(i ∈ I ) be a

MOS of an infinite-dimensional inner product space E. Let En be an n-dimensional
subspace of E. Then there is a mappingφn: F(En)→ F(E) with the following
properties: (i) φn(En) = E, (ii) if M , N ∈ F(En), then M⊥N if and
only if φn(M)⊥(M) and, moreover,φn(M ∨ N) = φn(M) ∨ φn(M), and (iii) φn

(sp(xj )) =
∨

i sp(x j
i ), j = 1, . . . , n, where x1, . . . , xn is a fixed orthogonal basis

in En. If s is a finitely additive state onF(E), then sn := s ◦ φn is a state onF(En).

Proof: Let x1, . . . , xn be a fixed orthogonal basis inEn and letEβn
i

be ann-
dimensional subspace ofE generated by{x1

i , . . . , xn
i }(i ∈ I ). Letφβn

i
be an isomor-

phism fromF(En) ontoF(Eβn
i
) such thatφβn

i
(sp(xj )) = sp(x j

i ) for j = 1, . . . , n.
Define a mappingφn : F(En)→ F(E), by setting

φn(M) :=
∨

i

φβn
i
(M), M ∈ F(En), (3.1)

where
∨

means the join taken in the complete latticeF(E). Thenφn is a map with
the required properties. Indeed,φn(En) =∨φβn

i
(En) =∨i Sβn

i
= (

⋃
i Sβn

i
)⊥⊥ =

S. Further, ifM ⊥ N, M, N ∈ F(En), thenφβn
i
(M) ⊥ φβn

j
(N) for all i , j ∈ I , and

φβn
i
(M) ⊆ φβn

j
(N)⊥, i.e.,φ(M) ⊆ φβn

j
(N)⊥. This yieldsφ(M)⊥ ⊇∨ j φβn

j
(N) =

φ(N). Conversely,φ(M) ⊥ φ(N) impliesφβn
i
(M) ⊆∨i φβn

i
(M) ⊆⋂i φβn

i
(N)⊥ ⊆

φβn
i
(N)⊥. Therefore,φβn

j
(M) ⊥ φβn

j
(N) for anyi , which givesM⊥N. In addition,

φ(M ∨ N) =∨i φβn
i
(M ∨ N) =∨i (φβn

i
(M) ∨βn

i
φβn

i
(N)) =∨i (φβn

i
(M) ∨βn

i
φβn

i

(N)) = φ(M) ∨ φ(N), where∨βn
i

denotes the join taken in the spaceF(Eβn
i
). In-

deed, sinceEβn
i

is finite-dimensional, the join∨βn
i

is equal to the span generated by
the subspacesφβn

i
(M) andφβn

i
(N), and it is equal to the join taken in the spaceF(E).

¤

Lemma 3.5. Let E be an infinite-dimensional inner product space with the Glea-
son property. Then there is no finitely additive state onF(E) with only finitely many
values.

Proof: Let n ≥ 3 and letφn be the mapping fromF(En) intoF(E) guaranteed
by Leema 3.4. Lets be a finitely additive state onF(E). Then the mappingsn on
F(En) defined bysn(M) = s(φn(M)), M ∈ F(En) is a state onF(En). If s takes
only finitely many values onF(E), then Ran(sn) is finite. Due to (ii) of Lemma 3.1,
Ran(sn) = {0, 1/n, 2/n, . . . , n/n} ⊇ Ran(s) for anyn ≥ 3. Hence, Ran(s) cannot
be finite. ¤

Lemma 3.6. If E is an infinite-dimensional inner product space with the Gleason
property, thenF(E) possesses no finitely additive state with only countably many
values.
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Proof: Suppose thats is a finitely additive state onF(E) such that|Ran(s)| = ℵ0.
Then Ran(s) has to contain all rational numbers from the interval [0, 1]. Indeed,
let us take the statesn on F(En) from the proof of Lemma 3.4. Then everysn

has only finitely many values, i.e., Ran(sn) = {0, 1/n, 2/n, . . . , n/n} ⊆ Ran(s)
for anyn ≥ 3. It follows that Ran(s) contains all rational numbers from [0, 1].

Let now {xi }i∈I ∪ {yj } j∈J be a MOS inS such that|I | = |J|. Since J is
infinite, expressJ in two forms J = J1 ∪ J2 = J ′1 ∪ J ′2 ∪ J ′3, where J1 ∩ J2 =
∅ = J ′1 ∩ J ′2 = J ′1 ∩ J ′3 = J ′2 ∩ J ′3 and|I | = |J1| = |J2| = |J ′1| = |J ′2| = |J ′3|.

Without any loss of generality, we can assume in the first case that our MOS
is of the form {xi } ∪ {ui } ∪ {υi }(i ∈ I ), and in the second case is of the form
{xi } ∪ {ai } ∪ {bi } ∪ {ci }(i ∈ I ).

SetM0 =
∨

i sp(xi ) ∈ F(E).
In the first case, choose a three-dimensional subspaceE3 with a fixed orthog-

onal basis{x, u, v} and apply Leema 3.5 to out case to obtain the embeddingφ3 :
F(E3)→ F(E) satisfying (i)–(iii) of the leema. Sinces is a finitely additive state,
the mappings3 onF(E3) defined bys3(M) = s(φ3(M)), M ∈ F(E3), is a finitely
additive state. We haves3(sp(x)) = s(M0), which due to (ii) of Leema 3.1 implies
thats(M0) = 1/3.

In the second case, choose a four-dimensional subspaceE4 with a fixed or-
thogonal basis{x, a, b, c} and apply Leema 3.4 to our case to obtain the embedding
φ4 : F(E4)→ F(E) satisfying (i)–(iii) of the leema. Sinces is a finitely additive
state, the mappings4 onF(E4) defined bys4(M) = s(φ4(M)), M ∈ F(E4), is a
finitely additive state. We haves4(sp(x)) = s(M0), which by the hypothesis implies
thats(M0) = 1/4.

Comparing both cases, we have 1/3= s(M0) = 1/4. This is contradiction.¤

We now present the main result of the paper.

Theorem 3.7. Let (E, K , (·, ·)) be an infinite-dimensional inner product space
with the Gleason property. If s is a finitely additive state onF(E), thenRan(S) =
[0, 1].

Proof: Let s be a finitely additive state onF(E). If {xi } is a MOS inM ∈ F(E),
then for M0 =

∨
i sp(xi ) we haveM0 ⊆ M and s(M0) = s(M). Indeed, since

M0 = M0 ∨ (M ∩ M⊥0 ), we see thats(M0) = s(M0)+ s(M ∩ M⊥0 ) = s(M0)+
1− s(M⊥ ∨ M0) = s(M).

Since|Ran(s)| > ℵ0 (Lemma 3.5), there is a MOS{xi } ∪ {ui }(i ∈ I ) in Ssuch
that, forM =∨i sp(xi ), α := s(M) irrational. Without any loss of generality, we
can assumeα > 1/2 (if it is not the case, we pass toM⊥).

For anyn ≥ 3, we express{ui } as a join of mutually disjoint sets{u1
i } ∪ · · · ∪

{un−1
i }(i ∈ I ). Applying Lemma 3.4, there is a mappingφn: F(En)→ F(E) sat-

isfying (i)–(iii) of the lemma. Thenφn(sp(x)) = M0 and the mappingsn onF(En)



P1: GIR

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470295 September 26, 2003 16:24 Style file version May 30th, 2002

States on Subspaces of Inner Product Spaces with Gleason Property 1409

defined bysn(N) = s(φn(N)), N ∈ F(En), is a state onF(En), and, moreover,
sn(sp(x)) = s(M0) = α. By (i) of Lemma 3.1,α ∈ Ran(sn)1 = [λn, µn], where
0≤ λn ≤ µn ≤ 1. Therefore, Ran(s) ⊇ Ran(sn)1 ⊇ [1/n, α], while λn ≤ 1/n.
Hence, Ran(s) ⊇⋃∞n=1[1/n, α] = (0,α], so that Ran(s) ⊇ [0, α]. Sinceα > 1/2,
it is sufficient to consider the complements to obtain Ran(s) = [0, 1]. ¤

As a corollary we have the following result from Dvureˇcenskij and Pt´ak
(2002) characterizing finitely additive states onF(S) for a pre-Hilbert spaceS.

Theorem 3.8. If s is a finitely additive state onF(S) of an infinite-dimensional
real, complex or quaternion inner product space S, thenRan(S) = [0, 1].

Proof: From the Gleason theorem we have that S satisfies the Gleason property
(see Dvureˇcenskij and Pt´ak, 2002). ¤

Let us recall that Theorem 3.8 does not hold for states onE(S), in general,
In fact, it is shown in Pt´ak and Weber (2001) that there is an infinite-dimensional
pre-Hilbert space S such thatE(S) possesses a two-values state (see also Chetcuti,
2002, for further analysis).

4. GLEASON PROPERTY AND KELLER SPACES

One outstanding problem of quantum logic theory is that of the characteriza-
tion of quantum logics to be isomorphic with the setL(H ) of all closed subspaces of
a separable complex or real or quaternion Hilbert spaceH . Many specialists have
thought that the properties as atomicity, exchange axiom, infinite-dimensionality,
irreducibility of a complete OML L are characteristics only ofL(H ); see e.g.
Varadarajan (1968). Therefore, a result by Keller (1980) was a great surprise for
quantum logicians, when he presented OMLs with all the above properties which
cannot be embedded intoL(H ) for any H .

For a detailed theory of Keller spaces and measure theory on them see Keller
(1980, 1988, 1990) or Dvureˇcenskij (1992, Section 5.4).

In what follows, we show that in any infinite-dimensional Keller spaceE of
type (n0, n1, n2, . . .), wherenk ≥ 3 for anyk = 0, 1,. . ., there is a sequence{sk}
of finitely additive states onF(E) such that Ran(sk) = {0, 1/nk, 2/nk, . . . , nk/nk

for k ≥ 0.

Theorem 4.1. In every infinite-dimensional Keller space E of type(n0, n1,
n2, . . .), where nk ≥ 3 for any k= 0, 1,. . . , there is aσ -additive state sk onF(E)
such that Ran(sk) = {0, 1/nk, 2/nk, . . . , nk/nk for k = 0, 1,. . . . In particular, in
such an E the Gleason property fails to hold.
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Proof: Let E be a Keller infinite-dimensional inner product space of type (n0, n1,
n2, . . .), wherenk ≥ 3 for anyk = 0, 1,. . . . There is an orthogonal basis{e1, . . . ,
en0} ∪ {en0+1, . . . , en0+n1} ∪ {en0+n1+1, . . .en0+n1+n2} ∪ · · · . LetSk be the subspace
of E generated by{ei :

∑k−1
j=0 nj < i ≤∑k

j=0 nj }. There is a homomorphism∏
k : F(E)→ L(Rnk ), k = 0, 1,. . ., which preserves all atoms fromF(Sk) and

vanishes on all atoms fromF(Sj ) for j 6= k. Therefore, ifsk is a state onL(Rnk ),
then

ŝk(M) := sk(
∏

k

(M)), M ∈ F(E),

is aσ -additive state onF(E) (for details see, Dvureˇcenskij, 1992, Section 5.4.6).
In particular, if we set sk(M) := dim(

∏
k(M))/nk, M ∈ F(E), then

Ran(sk) = {0, 1/nk, 2/nk, . . . , nk/nk} for k = 0, 1,. . . . In particular, the Gleason
property fails to hold in this Keller space. ¤

We now present another example of an infinite-dimensional inner product
space in which the Gleason property fails.

Example 4.2. Let Q be the set of all rational numbers. Denote byQ f the set
of all infinite sequencesq = (q1, q2, . . .) from Q f such that all coordinates of
(q1, q2, . . .) are zero unless finitely many of them. ThenQ f is an infinite-
dimensional vector space over the fieldQwith the involutionλ 7−→ λ, λ ∈ Q. The
bilinear form 〈q, p〉 =∑∞i=1 qi pi , whereq = (q1, q2, . . .), p = (p1, p2, . . .) ∈
Q f is a Hermitian one, and (Q f ,Q, 〈·, ·〉) is an infinite-dimensional inner product
space.

Let En be any finite-dimensional subspace ofQ f , dim En ≥ 3, and letx be
any nonzero vector inEn. The mapping

sx : F(En)→ [0, 1] defined via

sx(M) = 〈xM , xM 〉
〈x, x〉 , M ∈ F(En),

wherex = xM + xM⊥ andxM ∈ M , xM⊥ ∈ En ∩ M⊥, is a finitely additive state
onF(En) concentrated on sp(x). In particular, we have

sx(sp( f )) = 〈 f, x〉2
〈 f, f 〉〈x, x〉

for any nonzerof ∈ En. Then 0, 1∈ Ran1(sx) and Ran1(sx) takes only rational
values, so that it cannot be a closed interval [λ, µ] for some 1≤ λ ≤ µ ≤ 1. Hence,
Q f does not satisfy the Gleason property.

We recall that we do not know whether there is a finitely additive state on
F(Q f ).
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Let us note that it would be interesting to know whether there are also further
infinite-dimensional inner product spaces other as pre-Hilbert spaces which have
the Gleason property.
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