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States on Subspaces of Inner Product Spaces
with the Gleason Property
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We show that the range of every finitely additive state on the sy$téi) of all orthog-

onally closed subspaces of an infinite-dimensional inner product $paaésfying the
Gleason property is equal to the real interval [0, 1]. Every pre-Hilbert space satisfies the
Gleason property, and in Keller spaces it fails to hold.
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1. INTRODUCTION

The systemC(H) of all closed subspaces of a Hilbert spakk,is the most
important example of quantum logics which plays a fundamental role in the axiom-
atization of quantum mechanics (see, e.g., Varadarajan, 1968). The fundamental
result of Gleason (1957) says that there is a one-to-one correspondence among
o-additive states, on£(H), 3 < dimH < Rg, and trace operatoif, on H given
by

s(M) =tr(T Py), M e L(H), (1.2)

wherePy, is the orthogonal projector frod ontoM.

The range of probability measures was probably firstly systematically studied
by Liapounoff (see e.g., Armstrong and Prikry, 1981), where some conditions are
given which guarantee that the range of the probability measure equal the real
interval [0, 1].

Recently, it was shown that the range of every finitely additive state on the
system of all orthogonally closed subspaces of an infinite-dimensional pre-Hilbert
spaceS is also equal to the whole real interval [0, 1]. (Dveeaskij and RiK,

2002) For the finite-dimensional case®fhis is not true, in general.

1Mathematical Institute, Slovak Academy of Scienc&sefinikova 49, SK-814 73 Bratislava,
Slovakia; e-mail: dvurecen@mat.savba.sk.

1403

0020-7748/03/0700-1403/ 2003 Plenum Publishing Corporation



1404 Dvuretenskij

In the present paper, we study the range of finitely additive states on the
system of all orthogonally closed subspag€&) of an infinite-dimensional inner
product spacé&. We show that if such ai satisfies the Gleason property, then
the range of any finitely additive state is equal to the whole real interval [0, 1].
We show that every infinite-dimensional pre-Hilbert space satisfies the Gleason
property, but in any infinite-dimensional nonclassical Keller space it fails to hold,
and the range of a state can be even a finite set.

2. ORTHOGONALLY CLOSED SUBSPACES OF INNER
PRODUCT SPACES

Let K be a division ring with chaK # 2 and with an involutiori: K — K
such that ¢ + 8)* = o* + 8*, (@B)* = *a*, ™ =« forall o, B € K. Let E
be a (left) vector space ovirequipped with a Hermitian form,(-): E x E — K,
i.e. (-, -) satisfies, for alk, y,ze E and alla, 8 € K, (ax + BY, 2) = a(X, 2) +
B(Y, 2), X,y + B2) = (X, )™ + (X, 2)B", (X, y) = (¥, X)*. The triplet €, K,
(-, +)) is said to be ainner product space (a generalized inner product spaxe)
a quadratic spacé (x, x) = 0 impliesx = 0, and unless confusion threatens, we
usually refer toE rather than toE, K, (-, -)).

For any nonzero vector € E, let spk) be a one-dimensional subspace of
E generated by the vectar Two vectorsx, y € E are orthogonal, and we write
xLly, if (x,y) =0.

For any subseM C E, we putM+ = {x € E: (X, y) =0 for anyy € M}.
Let F(E) denote the family of all orthogonally closed subspaceg dfe.,

F(E)={M C E: M+ = M}, (2.1)
and let£(E) denote the set of all splitting subspacednfi.e.,
¢(E)y={M C E:M*+ M =E}. (2.2)

ThenM e £(E) whenever dimM < oo or dim M+ < oo, in particular{0}, E
E(E), and

E(E) < F(B).

E is said to beorthomodulariff F(E) € £(E). Any finite-dimensional inner
product spacet is orthomodular. IfE is a real, complex, or quaternion inner
product space, then E is orthomudular iff E is a Hilbert space. Keller (1980)
gave examples of nonclassical infinite-dimensional inner product spaces which are
orthomodular.

2Indeed, letM + M1 = E and sinceM € ML, it suffices to prove tham-+ < M. We first note
that{0} = E* = (M + M1)L = ML n ML Letx € ML+, Thenthere exist; € M andx, € M+
such thaix = x3 + Xp. Hencex, = x — x; € M1+ and thereforex; = 0 and, consequently, € M.
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In general, the systefi(E) is an orthocomplemented complete lattice while
¢(E) is an orthomodular poset,i.e.M, N € ¢(E),M L N,thenM v N € ¢(E),
and in this casé v N = M + N, and if M C N, then the orthomodular law

N=MvVv(NNM* (2.3)

holds.
Moreover, according to Maeda and Maeda (1970, Lemma 33.3),

@) if M e F(E) andx € E is a nonzero vector, theMv spix) = M+
spk) € F(E),
@iy A M; =), M; for any systen{M;} from F(E).

A mappings : F(E) — [0, 1] such that (i)s(E) = 1 and (ii)s(M v N) =
s(M) + s(N) wheneverM andN are mutually orthogonally elements fraff(E)
is said to be dinitely additive stat¢or astatein the abbreviation). If (i) is changed
to (i))* s(\/i2; Mi) = X2, s(M;) for any sequence of mutually orthogonal sub-
spacegM;} from F(E), sis said to be a-additive state

For example, ifE is a finite-dimensional inner product space, then the map-
pings : F(E) — [0, 1] defined by

s(M) = dim(M)/ dim(E), M e F(E), (2.4)

is a finitely additive state.

Let s be a finitely additive state o/ (E). Let us set Rars) := {sS(M): M €
F(S)}. For any integei =0, 1,..., let us define Rass}; := {s(M): € F(E),
dmM =i}.

If E is a finite-dimensional inner product space, and defined by (2.4),
then Rang) = {0, 1/n, 2/n, ..., n/n}, wheren = dimE.

If E is an infinite-dimensional inner product space, it is unknown whether
F(E) possesses a finitely additive state. Let us recall that this is not known
(Dvurecenskij, 1992; Rtk, 1988) even ifE is a real, complex, or quaternion
incomplete inner product space.

In addition, in Dvureénskij and Rk (to appear), it is shown that, for every
real, complex, or quaternion incomplete inner product sgac&(E) possesses
no finitely additive state such thatRang)| < Ro. Itis proved that if such af (E)
possesses a state s, then Rpr{ [0, 1].

3. STATES WITH THE GLEASON PROPERTY

In the present section, we introduce the notion the Gleason property of an
infinite-dimensional inner product spaces, and we give the main result of the paper,
Theorem 3.7.

Let E be an inner product space. We say thatas theGleason propertyf,
for any finite-dimensional subspaEg, of E, n = dim E, > 3, and for any finitely
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additive states on F(E,), we have Raf(s) = [, u], where 0O< i1 < pu <1 are

real numbers. For example, any real, complex, or quaternion inner product space
of dimension at least three has the Gleason property, see &ansigj and Rtk
(2002). In Section 4, we show that in Keller spaces it fails to hold.

Lemma 3.1. Let E be an n-dimensional inner product space: 13, with the
Gleason property

() If sis afinitely additive state o/ (E), thenl/n € Ran(s).
(ii) Afinitely additive state s takes only finitely-many values if and only if s is
defined by (2.4).

Proof. (i) LetRan(s) = [A, u]. If 1/n < A, take an orthogonal basis, . . ., X,
in E. Then 1= ,1/n < Y, s(sp()) = 1, which is a contradiction. In a
similar way we can show that/h < u.

(i) Itis clear that the state (2.4) takes only finitely many values. Conversely,
let s take only finitely many values. Then Rds) is a finite set, therefore, by (i),
Ran(s) = {1/n} which proves thas is equal to the state defined by (2.4). O

We say that a systerfx;} of nonzero mutually orthogonal elements of a
subspacév of E is maximalin M, MOS for abbreviation, if, foxx € M such that
xLx; for anyi, we havex = 0.

Lemma3.2. Let{y;} be an MOS in a splitting subspace M of E. THgr}++ =
M.

Proof: It is evident that{y;}1+ < M, so thatM* < {y;}*. On the other hand,
let x € {y;}+, thenx = X1 + X, wherex; € M andx, € M+, Since &, y;) =0
for anyi, we have 0= (X1, ¥i) + (X2, ¥i) = (X1, ¥i). The maximality of{(y;} in M
givesx; = 0, so thatx € M+, which meangy,} € M*. O

A mapping¢ : F(E;) — F(E,) is said to be &aomomorphisnif ¢(E;) =
Eo, ¢(M1) = ¢(M)*, andgp(M v N) = ¢(M) v ¢(N) for all MLN. If ¢ is in-
jective andp—* is a homomorphismy is said to be amlsomorphism

Proposition 3.3. Let E; and E, be two inner product spaces over the same field,
and letdim E; = dim E; < oo. ThenF(E;) and F(E,) are isomorphic.

Proof: Let dim E; = n and let{xy, ..., Xa} and{ya, ..., y»} be orthogonal
bases inE; and E,, respectively. We define a mappibly: E; — E, by U(X) =
S0 @iy wheneverx = Y1 aiXi. Setgp(M) == {U(X): x € M}, M € F(Ej).
Theng isanisomorphism of (E;) andF(Ey). O
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Lemma 3.4. Let n> 1be an integer andx!} U {x?}U---U{x"}(i € 1) be a
MOS of an infinite-dimensional inner product space E. Leb&an n-dimensional
subspace of E. Then there is a mappifig F(E.) — F(E) with the following
properties: (i) ¢n(En) =E, (i) if M,N e F(E,), then MLN if and
only if o(M)L(M) and, moreoverp,(M v N) = ¢n(M) v ¢n(M), and (i) ¢n
(sp&;)) = Vi spk/), j =1,...,n,where x, ..., x, is a fixed orthogonal basis
in Ep. If sis afinitely additive state afi(E), then g := s o ¢,, is a state orfF (Ey).

Proof: Letx, ..., Xy be a fixed orthogonal basis i, and letEg be ann-
dimensional subspace Bfgenerated byx?, ..., x"}(i € I). Letggn be anisomor-
phism fromZ(En) onto F(Egr) such thaipgn (spk;)) = sp(xij) forj=1,...,n.
Define a mapping, : F(En) — F(E), by setting

on(M) = \/ &g (M), M € F(En), (3.1)

where\/ means the join taken in the complete lattiE€E). Theng, is a map with
the required properties. Indeeph(En) = \/ ¢ (En) = \V/; Spr = (Ui Spr)* =
S. Further, iftM L N, M, N € F(Ey), thengg (M) L gbﬁ?(N)for alli,jel,and
$pr(M) C g (N)*, i.e., (M) S ¢n(N)*. This yieldsp(M): 2 \/; gy (N) =
$(N). Converselyp(M) L ¢(N)impliesgr (M) € \/; ¢ (M) ) gpr(N)* <
¢>,3in(N)i. Thereforegbﬁ?(M) 1 ¢,gin(N) for anyi, which givesM L N. In addition,
d(M VvV N) =V (M Vv N) = V(g (M) vir ¢ (N)) = Vi (9 (M) Vg g
(N)) = ¢(M) v ¢(N), wherev g denotes the join taken in the spaEéEgn). In-
deed, sincén is finite-dimensional, the joir g is equal to the span generated by
the subspacefs (M) andgsr (N), and itis equal to the join taken in the spFeE ).
O

Lemma3.5. LetE be an infinite-dimensional inner product space with the Glea-
son property. Then there is no finitely additive state/qi) with only finitely many
values.

Proof: Letn > 3 and lety, be the mapping fronF(E,) into F(E) guaranteed
by Leema 3.4. Les be a finitely additive state a(E). Then the mapping, on
F(E,) defined bys,(M) = s(¢n(M)), M € F(E,) is a state orF(E,). If s takes
only finitely many values ot (E), then Rang,) is finite. Due to (ii) of Lemma 3.1,
Rang,) = {0, 1/n, 2/n, ..., n/n} 2 RangE) for anyn > 3. Hence, Rarg) cannot
be finite. O

Lemma3.6. If E isaninfinite-dimensionalinner product space with the Gleason
property, thenF(E) possesses no finitely additive state with only countably many
values.
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Proof: Suppose thatis afinitely additive state oft(E) such thatRang)| = Rq.
Then Rang) has to contain all rational numbers from the interval [0, 1]. Indeed,
let us take the statg, on F(E,) from the proof of Lemma 3.4. Then evesy
has only finitely many values, i.e., Rap = {0, 1/n, 2/n, ..., n/n} € Rang)
for anyn > 3. It follows that Rang) contains all rational numbers from [0, 1].

Let now {Xi}ie U {Yj}jes be a MOS inS such that|l | = |J|. SinceJ is
infinite, expressJ in two formsJ = J1U J, = JU JJU J;, whereJ; N J, =
P=dnNnh=nNnk=Jhndkand|l| =kl =k =] =1k =

Without any loss of generality, we can assume in the first case that our MOS
is of the form{x} U {u;} U {u;}(i € 1), and in the second case is of the form
{xiyUfa}U{biyu{c}( €1).

SetMp = \/; spi) € F(E).

In the first case, choose a three-dimensional subspaasth a fixed orthog-
onal basigx, u, v} and apply Leema 3.5 to out case to obtain the embedsling
F(E3) — F(E) satisfying (i)—(iii) of the leema. Sinceis a finitely additive state,
the mappings; on F(E3) defined bys;(M) = s(¢3(M)), M € F(Es3), is a finitely
additive state. We hav@(spk)) = s(Mo), which due to (ii) of Leema 3.1 implies
thats(Mp) = 1/3.

In the second case, choose a four-dimensional subdpaesth a fixed or-
thogonal basigx, a, b, ¢} and apply Leema 3.4 to our case to obtain the embedding
¢4 1 F(E4) — F(E) satisfying (i)—(iii) of the leema. Sinceis a finitely additive
state, the mapping; on F(E4) defined byss(M) = s(¢4(M)), M € F(E,), is a
finitely additive state. We havg(sp(x)) = s(Mg), which by the hypothesis implies
thats(Mp) = 1/4.

Comparing both cases, we hay81= s(Mg) = 1/4. Thisis contradiction

We now present the main result of the paper.

Theorem 3.7. Let(E, K, (;, -)) be an infinite-dimensional inner product space
with the Gleason property. If s is a finitely additive state®¢E), thenRan(S) =
[0, 1].

Proof: Lets be a finitely additive state afi(E). If {x;} isa MOS inM € F(E),
then for My = \/; spi) we haveMy € M and s(Mg) = s(M). Indeed, since
Mo = MoV (M N Mg), we see thas(Mg) = s(Mg) + S(M N Mg") = s(Mo) +
1—s(M+ v Mg) = s(M).

SincelRang)| > Rg(Lemma3.5), thereisaMOS;} U {uj}(i € I)in Ssuch
that, forM = \/, sp(;), « := s(M) irrational. Without any loss of generality, we
can assume > 1/2 (if it is not the case, we pass M*1).

Foranyn > 3, we expres$u; } as a join of mutually disjoint set{slil} U---u
{u{‘*l}(i € ). Applying Lemma 3.4, there is a mappigg: F(E,) — F(E) sat-
isfying (i)—(iii) of the lemma. Them,(sp&)) = Mo and the mapping, on F(Ep)
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defined bys,(N) = s(¢n(N)), N € F(E,), is a state oriF(E,), and, moreover,
Sh(spk)) = s(Mg) = «. By (i) of Lemma 3.1,« € Ran&,)1 = [An, n], Where
0 < An < un < 1. Therefore, Rasj 2 Rang,); 2 [1/n, «], while 1, < 1/n.
Hence, Rarg) 2 (Jo-,[1/n, «] = (0, «], so that Rarg) 2 [0, «]. Sincea > 1/2,
itis sufficient to consider the complements to obtain Rag( [0, 1]. O

As a corollary we have the following result from Dvesriskij and Rtk
(2002) characterizing finitely additive states6(S) for a pre-Hilbert spacé.

Theorem 3.8. If sis afinitely additive state o/ (S) of an infinite-dimensional
real, complex or quaternion inner product space S, tRam(@) = [0, 1].

Proof: From the Gleason theorem we have that S satisfies the Gleason property
(see Dvureénskij and Rik, 2002). O

Let us recall that Theorem 3.8 does not hold for state§ (@), in general,
In fact, it is shown in Rik and Weber (2001) that there is an infinite-dimensional
pre-Hilbert space S such thgtS) possesses a two-values state (see also Chetcuti,
2002, for further analysis).

4. GLEASON PROPERTY AND KELLER SPACES

One outstanding problem of quantum logic theory is that of the characteriza-
tion of quantum logics to be isomorphic with the §¢H) of all closed subspaces of
a separable complex or real or quaternion Hilbert spac®lany specialists have
thought that the properties as atomicity, exchange axiom, infinite-dimensionality,
irreducibility of a complete OML L are characteristics only 6(H); see e.qg.
Varadarajan (1968). Therefore, a result by Keller (1980) was a great surprise for
quantum logicians, when he presented OMLs with all the above properties which
cannot be embedded int&(H) for any H.

For a detailed theory of Keller spaces and measure theory on them see Keller
(1980, 1988, 1990) or Dvuecenskij (1992, Section 5.4).

In what follows, we show that in any infinite-dimensional Keller sp&cef
type (o, N1, N2, ...), wheren, > 3 for anyk = 0, 1,.. ., there is a sequends}
of finitely additive states orf(E) such that Rarg) = {0, 1/ny, 2/ny, ..., Nk/Nk
fork > 0.

Theorem 4.1. In every infinite-dimensional Keller space E of ty(m®, ny,
Ny, ...),wheren > 3foranyk= 0, 1,..., there is ar-additive state;son F(E)
such that Rafs) = {0, 1/nk, 2/n, ..., Ng/ngfork =0, 1,.... In particular, in
such an E the Gleason property fails to hold.
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Proof: LetE be aKellerinfinite-dimensional inner product space of typef;,
Ny, ...), whereng > 3foranyk =0, 1,.... There is an orthogonal bags, .. .,
€} U {Bno+1s - - s Engtny } U {Bngngt1s - - - Engtngny} U - - - . Let S be the subspace
of E generated byeg :Z'j(;(l, np<i< Z‘j‘:onj}. There is a homomorphism
[k : F(E) = L(R™),k =0, 1,..., which preserves all atoms frotfi(S) and
vanishes on all atoms frofi(S;) for j # k. Therefore, ifs is a state orC(R"™),
then

&M) :=s([[(M)), M e F(E),
k

is ac-additive state oF (E) (for details see, Dvurnskij, 1992, Section 5.4.6).
In particular, if we setsg(M):=dim([].(M))/ng, M € F(E), then

Ran&) = {0, 1/ny, 2/ny, ..., hg/ng} fork =0, 1,. ... In particular, the Gleason

property fails to hold in this Keller space. O

We now present another example of an infinite-dimensional inner product
space in which the Gleason property fails.

Example 4.2. Let Q be the set of all rational numbers. Denote ®Y the set
of all infinite sequencesg = (qs, Gz, . ..) from QF such that all coordinates of
@1, 92, ...) are zero unless finitely many of them. Th& is an infinite-
dimensional vector space over the fi@davith the involutionh. —— A, A € Q. The
bilinear form (g, p) = Y i~ 1q. pi, Whereq =0 9,-..), P=(P1, P2,...) €
QF is a Hermitian one, and)', Q, (-, -)) is an infinite-dimensional inner product
space.

Let E, be any finite-dimensional subspace®f, dimE, > 3, and letx be
any nonzero vector ifx,. The mapping

sc : F(En) — [0, 1] defined via

<X|V|1 XM>
x,x)

wherex = Xy + Xyt andxy € M, xy. € Eo,N M+, is a finitely additive state
on F(E,) concentrated on spj. In particular, we have

(M) = M e F(En),

(f, x)?
(f, £){x,x)

for any nonzerof € E,. Then 0, 1€ Ran(s«) and Ran(ss) takes only rational
values, sothatitcannot be a closed inter¥alf] forsome 1< 1 < u < 1. Hence,
QF does not satisfy the Gleason property.

We recall that we do not know whether there is a finitely additive state on

F@Q).

S«(sp(f)) =
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Let us note that it would be interesting to know whether there are also further
infinite-dimensional inner product spaces other as pre-Hilbert spaces which have
the Gleason property.
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